
Automatic Extraction of Code Dependency in
Virtual Reality Software

Jacinto Molina1, Xue Qin2, and Xiaoyin Wang1

1Department of Computer Science, University of Texas at San Antonio
2Department of Computing Sciences, Villanova University

jacinto.molina@my.utsa.edu, xue.qin@villanova.edu, xiaoyin.wang@utsa.edu

Abstract—Virtual Reality (VR) is an emerging technique with
various applications in education, navigation, remote communi-
cation, and gaming. In virtual reality software, VR objects, which
are graphics units linking with script files, play an important role
and they often need to be updated together with correlated source
code in the script files. However, traditional code dependency
analysis tools detect only direct source code dependencies and
can hardly detect code dependency across VR objects. In this
paper, we propose a novel technique, VRDepend, to extract code-
asset dependency within VR software projects. In particular, we
extract (1) the direct association between VR objects and script
files, (2) the compositional relations between VR objects, (3) event
triggering relations between scripts and VR objects. We evaluated
VRDepend based on script dependency extracted from file co-
revisions. Our evaluation results show that VRDepend can cover
64% script file dependencies in historical commits of our subject
VR software projects.

I. INTRODUCTION

The Virtual Reality (VR) market was valued at USD 17.25

billion in 2020 and is expected to reach USD 184.66 billion

by 2026, at an average growth rate of 48.7% over the forecast

period 2021 - 2026 [1]. Companies, such as Google, Microsoft,

Oculus, HTC, and Sony, have created a range of hardware

products that consumers can use for an immersive experi-

ence, and various software applications on education, remote

assistance, navigation, and gaming have been developed. A

recent study [2] shows that the number of open source VR

software projects are increasing with a steady growth rate of

17%, and a lot of developers are moving toward VR software

development.
However, VR software development is very different from

traditional UI / server software development in that the source

code is scattered on various VR objects in VR scenes and

they usually interact with each other through the properties

of objects they are attached to. This makes it very difficult

for developers especially novices to trace code dependency

and understand code interactions for analyzing bugs [3] and

addressing security and privacy concerns [4], [5]. In this

paper, to help trace and understand code dependency in VR

projects, we propose a novel technique called VRDepend.

It should be noted that we designed VRDepend based on

the VR development framework Unity [6]. We chose Unity

because it is dominating in VR software development and

accounts for more than 60% of the market share. Further-

more, Unity provides a unified programming interface for

developers to write applications for almost all main-stream

VR devices (e.g., Apple ARKit [7], Google ARCore [8],

Steam VR [9], DayDream / Cardboard [10], [11], Oculus [12],

HTC Vive [13], and Hololens [14]), so we believe that the

programming mechanisms in Unity (and our corresponding

technique design) can be largely generalized to various soft-

ware / hardware environment. In particular, besides direct code

dependency through method calls and variable references,

VRDepend further extracts the following types of dependency.

• Script VR-Object Association. In VR projects, source

code are written in script files, which are then associated

with VR objects in VR scenes. When a script file F is

attached to a VR object O, methods in F can refer to

all properties of O as gameObject.*. Since multiple

scripts can be attached to one VR object, all methods

in these scripts can refer to the same set of properties

and thus cause latent code dependency among scripts

associated to the same VR object.

• VR-Object Composition. VR objects can be com-

bined to form composite objects. For example, a table

and a tablecloth can be combined so that they are

moved together, but the tablecloth color (or the whole

tablecloth object) can be replaced at runtime. Scripts

associated to a composite object and its components

can refer to their properties through parent.* and

children[index].*, and thus cause latent code de-

pendency among scripts associated to components of a

same composite VR object.

• VR-Object Events. Besides direct method calls, methods

in a script S with certain names (e.g., Update, Start)

will be called at certain life cycle events of the VR

object O that S is associated to. For example, when O
is instantiated or destroyed, corresponding methods in all

scripts associated to O will be called. Therefore, when

method in script A instantiated a VR object B, it indirectly

called all the corresponding methods in scripts associated

to B, and thus cause latent code dependency between A
and B’s associated scripts.

To detect the above additional code dependency in VR soft-

ware projects, the basic idea of VRDepend is to further trace

dependency among VR objects, and then transitively concate-

nate code-object dependency, object-object dependency, and

object-code dependency. For the evaluation of VRDepends,

we considered 20 top open source VR software projects from

381

2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC)

2643-7171/21/$31.00 ©2021 IEEE
DOI 10.1109/ICPC52881.2021.00043

UnityList1 (based on the number of stars in their correspond-

ing Github repository), and collected their version history.

From the version history, we extracted 200 most recent code

commits that contain two to five script file changes. Our

initial evaluation results show that VRDepend can cover 64%

dependencies between co-revised source files, compared with

31% of the baseline code-analysis-based technique. To sum

up, we make the following contributions in this paper.

• We identified a number of major additional code depen-

dency in VR software projects.

• We developed a novel technique VRDepend to detect

additional code dependency in VR software projects.

• We carried out an initial evaluation of VRDepend based

on the code dependency between co-revised files in

version history of 20 top open source VR projects, and

the results show that VRDepend largely outperforms the

baseline approach relying on direct code dependency.

II. BACKGROUND

In this section, we introduce some background knowledge

about VR software development and explain terms we use in

our paper.

VR Objects. In VR software development, a VR object is

a basic element for visual experience and user interaction. An

exemplar VR object is a table in a virtual room.

VR Scenes. A VR scene is a combination of VR objects in a

virtual space to perform certain user task. It can be analogous

to a window / frame in a traditional GUI software, or an

activity in an Android app. The major differences are that VR

scenes are three-dimensional and the VR objects have much

richer animation behaviors than UI controls / views in GUI

windows and Android activities.

III. APPROACH

The overview of our approach is presented in Figure 1.

From the figure, we can see that VRDepend first performs

three analyses (Event Trigger Analysis, Extraction of VR-

Object-Script Association, and Hierarchical Analysis of VR

Objects) to extract the additional types of dependency between

script files and VR objects. Then, by gathering the property

references of VR objects in script files, VRDepend chains de-

pendency between scripts and VR objects to acquire additional

code dependency among scripts. We next introduce the details

of each component in VRDepend.

A. Extracting VR-Object-Script Association

The first step towards detecting indirect code dependency

through VR objects is to extract the association between VR

objects and scripts. Such association can be detected from the

corresponding meta files of the VR object and the script file.

In Unity framework, all VR Objects in a VR scene are

defined in the .unity file which is the meta file of the a VR

scene. Example 1 shows a segment of .unity file which

defines a VR object (called GameObject in Unity), the ID of

1UnityList is a list of open source projects based on Unity framework

the VR object is 1756271139 at the beginning of the defi-

nition, and its name is worldmap. The MonoBehaviour
component of a VR object defines its run-time behavior,

so the association with script files is also declared there as

highlighted.

Example 1 Definition of a VR-Object and its Script Associ-

ation

--- u1 \&1756271139
GameObject:
...
m_Name: worldmap
...
--- u114 &1756271142
MonoBehaviour:
...
m_Script: {fileID: 11500000,

guid: 1239b8acfd6fc154ca4bcccfb2bd7a54 , type: 3}
...
--- u1 \&2006036288
GameObject:
...

The highlighted ID is a unique identifier of a script file,

which is automatically given by the framework in the meta file

of the script file (i.e., .cs.meta), as shown in Example 2.

To acquire all associations between VR objects and scripts,

VRDepend first extracts all VR objects from the .unity
files and then link them with scripts based on the IDs in their

MonoBehavior component and meta files of scripts.

Example 2 The Corresponding Script Meta File

fileFormatVersion: 2

guid: 1239b8acfd6fc154ca4bcccfb2bd7a54
...

B. Hierarchy Analysis of Composite VR Objects

The hierarchical relationship among VR objects are also

defined in scene meta files (.unity files). The snippet in Ex-

ample 3 shows the definition of a VR Object named Player
and the ID of one of its child VR object (highlighted).

Example 3 Parent Object Meta Information

--- u1 &1625246633
GameObject:
...
m_Name: Player
..
--- u4 &1625246634
Transform:
...
m_Children:

- {fileID: 1486385204 }
...

On the child VR object side, the link is less straightforward.

The child object ID referred in the parent object is actually

the component ID of the child object’s transform component

382

Extraction of VR-Object-
Script Association

VR-Object-Script
Association

Hierarchical Analysis
of VR-Objects

Event Trigger
Analysis

Script Files

Script Meta
Files

Scene Meta
Files

VR-Object
Hierarchy

Event Target
Association

VR-Object Reference
Analysis

Property References
of VR-Objects

Dependency
Concatenation

Additional Code
Dependency

Fig. 1: Overview of VRDepend

(highlighted in Example 4). The reason is that Unity combines

transforms (i.e., the location and bounding box of a VR

object) instead of VR objects themselves. By linking the

transform component IDs and child object IDS of VR objects,

VRDepend is able to construct the hierarchical relationship

among VR objects.

Example 4 Child Object Meta Information

--- u1 &1486385203
GameObject:
...
m_Component:
- component: {fileID: 1486385204}
...
m_Name: MainCamera
...

--- u224 & 1486385204
RectTransform:
...

C. Event Trigger Analysis

The last additional type of dependency is between object

events triggered in scripts and the life-cycle methods of the

object. In Example 5, we show a code snippet where a

VR object named paper is initiated in the code. This will

trigger the Start() method on all scripts associated to object

paper. In the event trigger analysis, VRDepend first detects

all invocation of event methods such as Instantiate and

Destroy, and then we trace back to the definition of the

affected GameObject variable (i.e., paperToSpawn in the

code) to find all possible VR objects the variable may refer

to. Thus we are able to gather all event-target associations

which links event-triggering code with VR objects the events

are triggered on.

D. Dependency Concatenation

In the VR-Object reference analysis, VRDepend extracts

all references to VR objects in script files (e.g., through

gameObject, parent, children[index]). After that,

all such references are mapped to VR object names based on

the results of VR-Object-Script associations and VR-Object

hierarchy. It should be noted that we resolve hierarchical

relations in a conservative way. For example, if VR object A

Example 5 Code to Trigger a Instantiation Event

public void SpawnPaper(){
...
GameObject paperToSpawn = GameObject.Find("

paper");
Instantiate(paperToSpawn, position.transform.

position, position.transform.rotation);
...

}

has multiple parents (being combined in multiple composite

VR objects) denoted as a set S, then, the parent reference

in any script associated to A will be mapped all elements in

S. Also, since children objects are indexed in the .unity file

and our extracted hierarchy, we can precisely handle children

references if the index value is a constant. However, if the

index value is a variable, we will conservatively map the

reference to all children objects. Moreover, we link event-

target associations with the VR-Object-Script associates from

the target VR objects to construct additional code dependency

due to indirect calls.

IV. PRELIMINARY EVALUATION

A. Evaluation Setup

It is difficult to directly evaluate the quality of code

dependency constructed by VRDepend. Therefore, we use

script file dependency extracted among co-revised files in

software version history to evaluate our results. In particular,

we collected 20 top VR software projects and their version

history from UnityList. For each project, we extracted the

most recent 10 commits that have 2-5 revised script files

(i.e., .cs files) to form a dataset2 of 200 code commits. We

chose commits with 2-5 revised scripts because we need at

least 2 script file revisions to form script file dependency, and

commits with too many file revisions are more likely to be

systematical changes and even addition of a whole feature so

the revised files may not be dependent on one another. By

inspecting the co-revised files in 200 commits, we confirmed

688 pairs of file dependencies (i.e., the co-revisions were

caused by dependencies between files). Note that if a file

2Our dateset is at https://sites.google.com/view/vrdepend

383

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

Baseline VRDepend

Fig. 2: Coverage of File Dependencies among Co-revised Files

revision r is irrelevant to other file revisions s1, s2, ... in the

commit, we will not consider there is dependency between r
and si.

B. Evaluation Results

We measure the effectiveness of VRDepend by calculating

what proportion of confirmed file dependency pairs can be

covered by VRDepend results, and compare it with a baseline

approach which considers only direct code dependency (i.e.,

method invocation and global field accesses). The results are

shown in Figure 2. The X-axis of the figure shows the number

of transitive dependency hops we consider. So if the results

of VRDepend or the baseline state that A depends on B and

B depends on C, but not A depends on C, the dependency

(A, C) will be considered to be covered at dependency hop

2. The results show that VRDepend largely outperforms the

baseline on coverage (57%, 64% vs. 27% and 31% at hops 1

and 2), indicating that VRDepend can effectively detect code

dependency missed by the baseline.

Although VRDepend has better coverage, it may be ar-

gued that a naïve baseline that considers all file pairs to be

dependent on each other will achieve even better coverage.

Therefore, we further check whether VRDepend reports too

many script dependency pairs. We evaluate this by comparing

the average co-revision rate (the proportion of co-revised files

among all dependent files of a when a is revised) of VRDe-

pend reported dependency pairs with those reported by the

baseline. This rate is expected to be low because dependency

does not necessarily result in co-revision. The results are

shown in Figure 3. From the figure we can see that the co-

revision rate of VRDepend is comparable with the baseline

at hops 1 and 2, showing that VRDepend does not detect

too many script dependency pairs. When the number of hops

increases, the co-revision rate of both approach drops because

more hops means less close dependency and less likelihood of

co-revision. However, VRDepend drops more sharply because

VRDepend considers more types of dependency and thus

the dependency closure extends further as hops increase. By

contrast, the baseline drops more slowly because dependency

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5

Baseline VRDepend

Fig. 3: Co-revision Rate of Files with Dependency

closure is reached earlier due to the missing of dependency

across VR objects.

V. RELATED WORK

The authors are not aware of research efforts in VR software

dependency analysis, but there exist some empirical studies.

Murphy-Hill et al. [15] performed a study on game developers

to understand the challenges in video game development and

how they are different from traditional software development.

Washburn et al. [16] studied failed game projects to find out

the major pitfalls in game development. Lin et al. [17] studied

the common updates in steam platform to understand the

priority of game updates. Rodriguez and Wang [2] performed

an empirical study on open source VR software projects to

understand their popularity and trends. Pascarella et al. [18]

studied open source video game projects to understand their

characteristics and the difference between game and non-

game development. Zhang et al. [19] studied the privacy

issues of VR applications. Code dependency analysis has a

long research history dates back to program slicing [20].

Various analyses have been proposed to enhance precision

of code analysis [21], [22], [23] and generalize it to more

software artifacts [24], [25] or more scenarios [26], [27], [28].

There have also been research efforts on predicting file co-

changes [29], [30]. Compared with all these works, our work

first identified major types of latent code dependency in VR

software projects and proposed VRDepend extract such latent

code dependency.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel technique VRDepend

to detect code dependency in VR software projects. The

evaluation results show that VRDepend detects twice as many

useful code dependency pairs as detected by the baseline with

comparable precision. In the future, we will further extend our

approach by investigating the missing confirmed pairs of script

dependency, and evaluating VRDepend on a larger dataset with

more commits.

ACKNOWLEDGMENTS

This work is supported in part by NSF Awards NSF-

1736209, NSF-1846467, and NSF-2007718.

384

REFERENCES

[1] https://www.mordorintelligence.com/industry-reports/
virtual-reality-market, Recently visited on 01/13/2021.

[2] I. Rodriguez and X. Wang, “An empirical study of open source virtual
reality software projects,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2017, pp. 474–475.

[3] Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei, “Jdf: detecting
duplicate bug reports in jazz,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2. IEEE, 2010, pp. 315–316.

[4] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: Tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 37–47.

[5] X. Zhang, X. Wang, R. Slavin, T. Breaux, and J. Niu, “How does
misconfiguration of analytic services compromise mobile privacy?” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). IEEE, 2020, pp. 1572–1583.

[6] “Unity documentation - 2d or 3d projects,” https://docs.unity3d.com/,
2020, accessed: 2020-06-30.

[7] “Apple arkit,” https://developer.apple.com/augmented-reality/, 2020, ac-
cessed: 2020-12-30.

[8] “Google arcore,” https://developers.google.com/ar, 2020, accessed:
2020-12-30.

[9] “Steam vr,” https://store.steampowered.com/steamvr, 2020, accessed:
2020-12-30.

[10] “Google daydream,” https://arvr.google.com/daydream/, 2020, accessed:
2020-12-30.

[11] “Google cardboard,” https://arvr.google.com/cardboard/, 2020, accessed:
2020-12-30.

[12] “Oculus,” https://www.oculus.com/, 2020, accessed: 2020-12-30.
[13] “Htc vive,” https://www.vive.com/us/, 2020, accessed: 2020-12-30.
[14] “Microsoft hololens,” https://www.microsoft.com/en-us/hololens, 2020,

accessed: 2020-12-30.
[15] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle

sprains, and keepers of quality: How is video game development
different from software development?” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 1–11.

[16] M. Washburn, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,
and C. Bird, “What went right and what went wrong: An analysis
of 155 postmortems from game development,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE ’16, 2016, p. 280–289.

[17] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of
popular games on the steam platform,” Empirical Software Engineering,
vol. 22, no. 4, pp. 2095–2126, 2017.

[18] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is
video game development different from software development in open
source?” in 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). IEEE, 2018, pp. 392–402.

[19] X. Zhang, R. Slavin, X. Wang, and J. Niu, “Privacy assurance for android
augmented reality apps,” in 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC). IEEE, 2019, pp. 114–
1141.

[20] M. Weiser, “Program slicing,” IEEE Transactions on software engineer-
ing, no. 4, pp. 352–357, 1984.

[21] T. Reps, “Undecidability of context-sensitive data-dependence analysis,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 22, no. 1, pp. 162–186, 2000.

[22] J. Ossher, S. Bajracharya, and C. Lopes, “Automated dependency reso-
lution for open source software,” in 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE, 2010, pp. 130–
140.

[23] H. Tang, X. Wang, L. Zhang, B. Xie, L. Zhang, and H. Mei, “Summary-
based context-sensitive data-dependence analysis in presence of call-
backs,” in Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2015, pp. 83–95.

[24] H. Zhong and X. Wang, “Boosting complete-code tool for partial pro-
gram,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, pp. 671–681.

[25] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu, “Match-
ing dependence-related queries in the system dependence graph,” in
Proceedings of the IEEE/ACM international conference on Automated
software engineering, 2010, pp. 457–466.

[26] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
translate constant strings for software internationalization,” in 2009 IEEE
31st International Conference on Software Engineering. IEEE, 2009,
pp. 353–363.

[27] ——, “Transtrl: An automatic need-to-translate string locator for soft-
ware internationalization,” in 2009 IEEE 31st International Conference
on Software Engineering. IEEE, 2009, pp. 555–558.

[28] S. Mostafa, X. Wang, and T. Xie, “Perfranker: Prioritization of perfor-
mance regression tests for collection-intensive software,” in Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2017, pp. 23–34.

[29] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[30] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
source code changes by mining change history,” IEEE transactions on
Software Engineering, vol. 30, no. 9, pp. 574–586, 2004.

385

